Unit 11 - angles			
No.	Question	Answer	Example
11.1	What is an angle less than 90° ?	Acute	B
11.2	What is an angle between 90° and 180° ?	Obtuse	-
11.3	What is an angle greater than 180° ?	Reflex	
11.4	What is a right angle?	90°	1
11.5	Adjacent angles on a straight line sum to...	180°	$\frac{\sum_{a+b=180}}{\text { 最 }}$
11.6	Angles around a point sum to...	360°	
11.7	Vertically opposite angles are...	Equal	
11.8	Interior angles in a triangle...	sum to 180°	
11.9	Interior angles in a quadrilateral...	sum to 360°	包
11.10	All angles in an equilateral triangle...	are 60°	
11.11	Alternate angles...	are equal	$\xrightarrow[x_{k}]{\stackrel{y}{x}}$
11.12	Corresponding angles...	are equal	$\rightarrow p_{\mathrm{b}}$
11.13	Co-interior angles...	add up to 180	$\xrightarrow{\because y}$
11.14	What does parallel mean?	2 lines at an equal distance apart that will never intersect	
11.15	What does perpendicular mean?	2 lines that meet at a 90° angle	

Unit 12 - Bearings			
No.	Question	Answer	Example
12.1	Bearings	1. Measure from North (draw a North line) 2. Measure clockwise Your answer must have 3 digits (e.g., 047°)	
12.2	Scale	The ratio of the length in a model to the length of the real thing.	
12.3	Scale (Map)	The ratio of a distance on the map to the actual distance in real life	

Date (week commencing)	Numbers to learn
$25 / 04 / 22$	$11.1-11.10$
$02 / 05 / 22$	$11.9-12.3$
$09 / 05 / 22$	$11.1-12.3$
$16 / 02 / 22$	(Spring 2) 7.1 to 8.3
$23 / 02 / 22$	(Spring 2) 7.1 to 8.3 (summer 1) 11.1-12.3

Date (week commenings)	Numbers tolearn
$28^{\text {th }}$ Feb	9.1 to 10.1
$7^{\text {th }}$ Mar	9.1 to 10.6
$14^{\text {th }}$ Mar	9.1 to 10.6
21 st Mar	9.1 to 10.6 and 7.1 to 8.3
28 $^{\text {th }}$ Mar	9.1 to 10.6 and 7.1 to 8.3
4th Apr	9.1 to 10.6 and 7.1 to 8.3

Year 8 - Maths - Spring 1

Unit 4 - negative numbers		
No.	Question	
4.1	Positive Number	Answer
4.2	Negative Number	Any number greater than zero
4.3	Positive X Positive $=$	Positive
4.4	Positive X Negative $=$	Negative
4.5	Negative X Positive $=$	Positive
4.6	Negative X Negative $=$	

Learning means...

I am using look >> cover >> write >> check
at least twice for this week's facts

and/or
I made flash cards ("Question" on one
side and "Answer" on the other) for the
facts and got someone to test me on
them at least twice

$$
\text { and/or }
$$

I used Quizlet to practise the fact for 5
minutes everyday.
so that...
I achieve the minimum score of $8 / 10$ on
the quiz

REMEMBER: I don't need to learn the clarifications and examples (in brackets)!

Unit 5 - equations		
No.	Question	Answer
5.1	Variable	A symbol (usually a letter) used to represent an unknown value e.g. x
. 2	Term (algebra)	Each part of an expression separated by a + or (e.g. in $x^{2}-2 x+4, x^{2}, 4$ and $2 x$ are the terms)
5.3	Constant	A term that does not contain a variable
5.4	Expression	A value written using at least one variable (e.g. 3 b or $5 \mathrm{t}-9 \mathrm{~s}$)
5.5	Equation	An expression shown to be equal to another value (e.g. $3 b=50$ or $5 t-9 s=10 t-9 s-7$)
5.6	Coefficient	The number in front of the variable (e.g. for $2 x, 2$ is the coefficient of x)
5.7	Substitute	Replace the variable with something else
5.8	Solve	Calculate the value of the variable
5.9	Like Terms	Terms that have the same letter and same index (e.g. $2 x^{2}$ and $5 x^{2}$)
5.10	Collect Like Terms	Write all like terms as a single term by adding or subtracting them together
5.11	Simplify	Rewrite the expression in an easier to remember form.
5.12	nth Term	An algebraic expression giving the rule to find the value of any given term in the sequence
5.13	Term (sequence	Any value in the sequence
5.14	Consecutive	Values in order with no gaps (e.g. 5 and 6 are consecutive integers)
5.15	What is a linear sequence?	A sequence that increases or decreases by the same amount between terms

Unit 1 - primes			Unit 2 - fractions		
No.	Question	Answer	No.	Question	Answer
1.1	Prime number	An integer that has exactly two factors; one and itself	2.1	Improper Fraction	A fraction where the numerator is greater than the denominator
1.2	Square number	The result of multiplying an integer by itself	2.2	Mixed Number	An improper fraction written as an integer part and a proper fraction.
1.3	Square root	The inverse of squaring e.g. the square root of 64 is 8	2.3	Unit Fraction	A fraction with a numerator of one
1.4	Integer	A whole number	2.4	How do you multiply fractions?	Multiply the numerators and multiply the denominators
1.5	Multiple	A number in the times table	2.5	How do you divide fractions?	Keep Change Flip
1.6	Factor	A number that divides into another number without any remainder	2.6	How do you add fractions?	Convert to a common denominator, then add the numerators
1.7	HCF (Highest Common Factor)	The largest integer that is a factor of all of the values.	2.7	How do you subtract fractions?	Convert to a common denominator, then subtract the numerators
1.8	LCM (Lowest Common Multiple)	The smallest integer that is a multiple of all of the values	2.8	How do you find a fraction of an amount?	Divide the amount by the denominator and multiply by the numerator
1.9	Index	The amount of copies of the base value that need to be multiplied together.	2.9	To find.... ${ }^{\frac{1}{2}}$ of	Divide by 2
1.10	Power	The index	2.10	To find.... ${ }^{\frac{1}{3}}$ of	Divide by 3
			2.11	To find... $\frac{1}{4}$ of	Divide by 4
1.11	Squared	A number to the power of 2	2.12	To find.... ${ }_{5}^{1}$ of	Divide by 5
1.12	Cubed	A number to the power of 3	2.13	To find... $\frac{1}{6}$ of	Divide by 6
1.13	Prime Factors	The factors of a number that are also prime numbers	2.14	To find.... ${ }^{\frac{1}{7} \text { of }}$	Divide by 7
1.14	Prime Factor Decomposition	Breaking down a number into the product of its prime factors using a prime factor tree	2.15	To find... $\frac{1}{8}$ of	Divide by 8
			2.16	To find... $\frac{1}{9}$ of	Divide by 9
1.15	Product	The result of a multiplication	2.17	To find... $\frac{1}{10}$ of	Divide by 10

