Date (week commencing)	Numbers to learn
$01 / 11 / 21$	$5.1-5.8$ $3.1-3.3$ 4.1
$08 / 11 / 21$	$5.1-6.4$
$15 / 11 / 21$	$6.1-6.7 \quad 2.1-2.3$
$22 / 11 / 21$	$5.1-6.7$
$29 / 11 / 21$	$1.1-2.6 \quad 5.1-5.8$
$06 / 12 / 21$	$2.7-4.5 \quad 6.1-6.7$
$13 / 12 / 21$	$1.1-6.7$

Learning means...

I am using look >> cover >> write >> check at least twice for this week's facts
and/or

I made flash cards ("Question" on one side and "Answer" on the other) for the facts and got someone to test me on them at least twice
so that...

I achieve the minimum score of $8 / 10$ on the quiz

Unit 5 - sequences		
No.	Question	Answer
5.1	Linear/arithmetic sequence	A number pattern which increases or decreases by the same amount each time
5.2	Common difference	The amount the sequence increases or decreases by between each term
5.3	Geometric sequence	A number pattern that uses multiplication between each term
5.4	Term (sequence)	A number in a sequence
5.5	The nth term	The general rule for a number pattern (this is the 10 th term in the sequence
5.6	n (sequence)	$1,4,9,16,25,36,49,64,81,100,121,144$
5.7	The first 10 square numbers are	
5.8	The first 5 cube numbers are	$1,8,27,64,125$

Unit 6 - expanding and factorising			
No.	Question		Answer

Unit 1 - coordinates				Unit $2-\mathrm{y}=\mathrm{mx}+\mathrm{c}$			
No.	Question	Answer	Example	No.	Question	Answer	Example
1.1	Coordinates are always	(x, y)		2.1	Vertical lines are always	$\mathrm{x}=\mathrm{..}$. where all the x coordinates are the same	$x=3$
1.2	Midpoint of a line segment	$\left(\frac{x_{1}+x_{2}}{2}, \frac{y+y_{2}}{2}\right)$	$\boldsymbol{o}^{\left(x_{2}, y_{2}\right)}$	2.2	Horizontal lines are always	$y=\ldots$ where all the y coordinates are the same	$y=6$
Unit 3 - proportion				2.3	m	Gradient	Example: $y=2 x-4$
No.	Question	Answer	Example				
3.1	Direct proportion	As one variable increases, the other variable increases		2.4	To find the gradient	$\frac{\text { Difference in } y}{\text { Difference in } x}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$	
3.2	Inverse proportion	As one variable increases, the other variable decreases		2.5 2.6	C	Y intercept The y coordinate when $\mathrm{x}=0$	
3.3	The unitary method	Find one first				This is where the line crosses the y axis	
Unit 4 - standard form				2.7	Parallel lines	Have the same gradient	$\begin{gathered} y=x+2 \\ y=x \\ y=x-2 \end{gathered}$
No.	Question	Answer	Example				
4.1	Standard form	A way of writing very big or very small numbers using powers of 10	$4,000,000$ is 4×10^{6}				
4.2	10^{-3}	0.001					
4.3	10^{-2}	0.01		2.8	Perpendicular lines	$-\frac{1}{\text { gradient }}$	
4.4	10^{-1}	0.1					$\begin{gathered} y=3 x+2 \\ y=-\frac{1}{3} x-1 \end{gathered}$
4.5	10^{0}	1					
4.6	10^{1}	10					
4.7	10^{2}	100					
4.8	10^{3}	1000					

