Exothermic & Endothermic reactions

- (a) Exothermic: a reaction that gives out energy to the surroundings (temperature increases)
- (b) Endothermic: a reaction that takes in energy from the surroundings (temperature decreases)
- (c) Energy level diagram (reaction profile) shows the energy changes taking place in a chemical reaction

- (e) Activation energy the minimum amount of energy required for a reaction to take place
- (f) In a reaction, chemical bonds are broken and made.

Breaking bonds = require energy = endothermic process Making bonds = release energy = exothermic process

More energy required than released = endothermic reaction More energy released than required = exothermic reaction

2. Cells and Batteries (triple only)

- (a) Cell (electrical): contains chemicals that react together to release energy.
- The voltage of a cell can be changed by changing the type of electrode and the type of electrolyte
- (i) Electrode: An electrical conductor used in a cell
- (ii) Electrolyte: A solution or molten substance that is broken down during electrolysis.
- (b) <u>Battery</u>: Multiple cells connected together.
- (i) Non-rechargeable battery - stops producing electricity when one of the reactants has been used up!
- (ii) Rechargeable battery the chemical reaction can be reversed using an external electrical current so the battery can be reused.
- (c)Fuel Cell: Efficient way of producing electrical energy where a fuel is oxidised electrochemically to produced a potential difference (or voltage) (normally hydrogen).

Anode: 2H2 -> 4H1 + 4e-Cathode: O2 + 4H" + 4e- 2H2O

+ less stages, less polluting, more efficient

3. Rates of reaction

- (a) This is a measure of how quickly a reactant is used up or a product is made.
- (b) This can be measured by:
 - (i) Dividing the amount of reactant used up by the time taken (q/s)
 - (ii) Diving the total volume of product (gas) produced by the time taken (cm^3/s)

Year 10 - Summer 1- Reacting substances

(iii) Measuring the time taken for the reaction mixture to change colour/become opaque.

RoR = (1/time taken)

- (c) Collision theory: Chemical reactions only occur when the reacting particles collide with each other with sufficient energy. The minimum energy required for a reaction is called the activation energy.
- (d) 4 factors affecting rate of reaction:

Temperature -

- (i) Hot reaction
- Particles move faster
- (iii) Collide more often
- (iv) Greater energy
- (v) More collisions are successful

Large surface area

(ii) Smaller pieces of

solid reactant

(iii) More particles

(iv) More collisions

(v) Faster reaction

exposed

(vi) Faster reaction

Surface Area -

Concentration -

- (i) Higher concentration (ii) Particles closer
- together (iii) Collide more often
- (iv) More successful
- collisions Faster reaction

Catalyst -

Provides an alternative pathway with a lower activation energy

time from start of reaction

- More successful collisions
- Faster reaction

(c) Limiting reactant: This is the reactant that is completely used up in a reaction. It stops the reaction from continuing.

armount

product

(d) Rates of reaction graphs:

- Steep line = fast reaction
- Horizontal line = reaction has stopped (one reactant has finished)
- (given enough time) The lines will meet = both products will produce the same amount of product from the same amount of reactants, just at a different rate,
- Gradient of line = rate of the reaction!

Le Chatelier's Principle (HT)

Le Chatelier's principle - if a system that is in equilibrium is subjected to a change in conditions, the system will shift to counteract the change,

Exothermic reactions: Endothermic reactions: Temperature ↑ = Yield ↓ Temperature \uparrow = Yield \uparrow Temperature ↓ = Yield ↑ Temperature ψ = Yield ψ

Gas reactions:

Pressure † = Favours the side that produces least number of gas molecules Pressure | = Favours the side that produces largest number of gas

Concentration of reactant/product:

System no longer in equilibrium so favours the reaction which will return to equilibrium.

E.g. Treactant concentration = T products formed

↑ product concentration = ↓ products formed

Reversible reactions

(a) Reversible reactions: A reaction that can go forwards and backwards.

In a reversible reaction, the reaction will be endothermic in one direction and exothermic in the other direction.

- e.g. Ammonium chloride ammonia + hydrogen chloride
- (b) Equilibrium: When the rate of the forward reaction is equal to the rate of the backwards reaction.

6. Units

Measurement	Unit (words)	Unit
Mass	Grams	9
Volume	Centimetres cubed	cm ³
Rate	Grams per second	g/s
Rate	Centimetres cubed per second	Cm³/s
Rate	Moles per second	Mol/s
Concentration	Moles per decimetre cubed	Mol/dm ³
Moles	Mol	Mol
Percentage Yield	Percent	%
Atom Economy	Percent	%
Relative Atomic Mass (Ar)	No unit	No unit
Relative Formula Mass (Mr)	No unit	No unit

Oasis Academy Brislington

Year 10 - Summer 1- Reacting substances

7. Calculations

- (a) Conservation of Mass: Mass of reactants = mass of products
- (b) Relative Atomic Mass (Ar) the mass of one atom e.g. Ar of carbon = 12 (shown in the periodic table)
- (c) Relative Formula Mass (Mr) the sum of the relative atomic masses of all the atoms in a formula e.g. CO2 = 12 + 16 + 16 = 44
- (d) Atom economy = how much of the reactant is turned into <u>useful</u> product.
- (e) Percentage yield = tells us how much of a product is actually produced compared to the theoretical yield

Percentage yield (%) =

actual yield x 100

theoretical yield

- (f) Factors effecting percentage yield are:
- Products being lost during transfer from one container to another
- Not all of the reactants reacting together
- Some of the products escaping as a gas
- Some reactants forming a product with an unexpected substance

8. Calculations (HT)

(a) Calculating yield: Calculate the yield of a product when given the mass of a reactant

Mass of desired product = Mr of desired product x mass of reactant

Mr of reactant

Moles: A measure of the number of particles in a substance

1 mole = 6.02×10^{23} (This is called the <u>Avogadro Constant</u>) Ar = Mass of one mole of an element (i.e. six hundred thousand billion billion atoms of carbon will weigh 12g.)

Moles (Mol) = Mass (g)

1 mole of gas at room temp takes up a volume of 24dm3

Volume = amount (mol) x 24dm3

- (b) Calculating masses of reactants from a balanced equation
- 1. Write down balanced symbol equation
- 2. Work out the Mr of each substance

MassA = MassB × MrA MrB

3. Use the formula to calculate the mass of substance A.

9. Acids and Alkalis

 (a) When a substance dissolves in water, they dissociate (split) into their individual ions

Hydroxide ions (OH-) = alkaline Hydrogen ions (H+) = acidic

(b) pH scale is a measure of acidity/alkalinity of a solution

- (c) Indicators = a dye that changes colour depending on if it is acidic/alkaline
- (d) Neutralisation = acid and alkali reacting together to produce a neutral solution

Acid + Metal Oxide -> Salt + Water

Acid + Metal Carbonate -> Salt + Water + Carbon Dioxide

Hydrochloric acid -> Chloride Salts Nitric acid -> Nitrate salts Sulphuric acid -> Sulphate salts

(e) Strong acids (E.g. HCl) are completely ionised in water Weak acids (e.g. ethanoic acid) are only partly ionised in water

10. Concentration (HT)

(a) Concentration = the amount of a substance in a given volume, normally measured in mol/dm3

Concentration of a solution = amount of substance (mol)
(mol/dm³) volume (dm³)

- (b) Titration: An accurate technique to calculate how much acid is needed to neutralise an alkali (or vice versa)
- (c) To calculate concentration using results from a titration:
- (i) Write a balanced equation
- (ii) Calculate the moles in the substance you know (A) (using equation above)
- (iii) Calculate concentration of substance you want to find out (B) (using the equation above)