

Year 11 –Forces

	Topic:	Forces introduction (P.11)
1	Scalar quantities have only	magnitude
2	Vector quantities have and	magnitude and direction
3	Magnitude is another word for	Size
4	State 3 scalar quantities	Distance, speed, time
5	State 3 vector quantities	Displacement, velocity, acceleration
6	How can you show the size of a vector on a diagram?	Use an arrow.
7	What is the name of the type of force that occurs when the	Contact forces
	objects are physically touching?	
8	What is the name of the type of force that occurs when the	Non-contact
	objects are separated?	
9	Which type of force is magnetic force?	Non-contact
10	Which type of force is weight?	Non-contact
11	Which type of force is tension?	Contact
12	Which type of force is upthrust?	Contact
13	Define "weight"	The force acting on an object due to gravity
14	Define "gravitational field strength"	The pull of the Earth on an object
15	What is the equation for calculating weight?	Weight (N))= Mass (Kg) X Gravitational Field
		Strength (N/Kg)

1 . 1.		
	A force is a single force that has the same effect as	resultant
a	III the original forces acting together.	
2 V	What two things happens to objects if the forces acting on them	Stay still or constant speed
а	re balanced?	
3 S	State two effects on an object if the forces acting upon it are	Accelerate/decelerate/change
u	inbalanced?	direction/squash or stretch
4 T	o calculate the resultant force in one direction you	subtract
	the forces acting up/down or left/right.	
	Vhat is the name given to a diagram that shows the forces	Free body diagram
а	cting upon an <u>object</u>	
6 V	Veight can be measured using a	Newton meter or spring balance
	he point at which all the mass of an object acts is	the centre of mass
С	alled	
8 R	Resolve the forces means turn two forces into	one force/resultant force
9 T	o work out the centre of mass of a regular shape, you should	draw the lines of symmetry
10 T	o work out the centre of mass of an irregular shape, you	do the plumb line experiment
_	hould	
11 V	Vhich type of force occurs when air pushes you back?	Air resistance
12 V	What are the four forces acting on an accelerating boat?	Weight, thrust, upthrust, water resistance
	State the units for weight	Newtons (N)
14 S	State the units for mass	Kilograms (kg)
15 S	State the units for gravitational field strength	Newtons per kilogram (N/Kg)

	Topic:	Speed and velocity (P.13)
1	What is the difference between distance and displacement?	Distance = scalar, displacement = vector
2	Define "speed"	Distance covered in a given time
3	What is the equation linking displacement, velocity and time?	displacement = velocity x time
		s (m) = v (m/s) x t (s)
4	State three factors that may affect the speed a person walks	Age, terrain, fitness
5	State the typical speed for a person walking	1.5m/s
6	State the typical speed for a person running	3m/s
7	State the typical speed for a person cycling	6m/s
8	State the typical speed for a person driving on a motorway	30m/s
9	State the typical speed for an aeroplane	250m/s
10	State the speed of sound in air	330m/s
11	State the speed of light in air	300,000,000m/s
12	Describe the motion of an object traveling in a circle	Constant speed, changing velocity
13	Which piece of equipment is used to measure time?	Stopwatch
14	How is speed calculated for non-uniform motion?	Average speed (m/s) = distance (m) / time
		(s)
		s = d / t
15	Define "velocity"	Speed in a given direction

	Topic:	Distance and velocity-time graphs (P.14)
1	State the axes in a distance time graph	X axis = time, Y axis = distance
2	Describe what is meant by a flat horizontal line () on a	The object is stationary
-	distance-time graph?	The object is stationary
3	Describe what is meant by a straight diagonal line (/) away from	Object is moving at a constant speed AWAY
-	the x-axis on a distance-time graph?	from start
4	Describe what is meant by a straight diagonal line (\) towards	Object is moving at a constant speed back
	the x-axis on a distance-time graph?	TOWARDS the start
5	How do you calculate the speed of an object using a distance-	Calculate gradient (ΔΥ/ΔΧ)
	time graph if the speed is constant?	
6	If an object is not travelling at a constant speed, how will this	A curve
	motion be shown on a distance time graph?	
7	How do you calculate the speed of an object using a distance	Draw a tangent & calculate gradient
	time graph if the speed is not constant (the line is a curve!)?	
8	What does a steeper line on a distance-time graph represent?	An object moving faster
9	Describe the axes on a velocity-time graph	X-axis = time, Y-axis = velocity
10	Describe what is meant by a flat horizontal line () on a	The object is moving at a constant velocity
	xelocty-time graph?	
11	Describe what is meant by a straight diagonal line (/) away from	Object is accelerating
	the x-axis on a velocity-time graph?	
12	Describe what is meant by a straight diagonal line (\) towards	Object is decelerating
	the x-axis on a velocity-time graph?	
13	What do you calculate when you calculate the area under a	Total distance travelled
	velocity-time graph? (HT only)	
14	How do you calculate acceleration (if it is constant - a straight	Calculate gradient (ΔΥ/ΔΧ)
	line) from a velocity time graph?	
15	How do you calculate acceleration (if it is changing - a curved	Draw a tangent & calculate gradient
	line) from a velocity time graph?	

Oasis Academy Brislington

Year 11 –Forces

\vdash		<u> </u>
	Topic:	Falling objects and Newton's laws (P.15)
1	State the equation to calculate uniform acceleration when given	(final velocity) ² - (initial velocity) ² = 2 x
	velocity and distance	acceleration x distance
		v2-u2=2as
2	What is the acceleration of an object free falling due to gravity	9.8m/s2
	close to the Earth?	
3	What are the two forces acting upon a falling object?	Weight and air resistance
4	Describe the motion of an object as it begins to fall through a	It accelerates (weight is bigger than air
	fluid	resistance)
5	As an object continues to fall through a fluid, the weight remains	Air resistance increases
	the same, describe what happens to the air resistance as the	
	object gains speed?	
6	What is the term that given to describe the motion of an object	Terminal velocity
	when it's weight and the air resistance acting upon it are	
	equal?	
7	Describe what happens to the forces acting upon a parachuter	Air resistance ↑, weight stays constant
	when they open their parachute	
8	According to Newton's First Law, what will affect an object's	A resultant force
	velocity?	
9	According to Newton's First Law, if the resultant force acting	The object remains stationary
	upon a stationary object is zero, what will happen?	
10	According to Newton's First Law, if the resultant force acting	Moves with at same velocity
	upon a moving object is zero, what will happen?	
11	What is the term given to the tendancy of an object to continue	Inertia
	in their state of rest or uniform motion? (HT only)	
12	Which objects have a large inertia? (HT only)	Objects with a large mass
13	According to Newton's 2nd Law state what is the relationship	Directly proportional
	between acceleration and force?	
14	According to Newton's 2nd Law state what is the relationship	Inversely proportional
	between acceleration and mass?	
15	Write Newton's Second Law as an equation	F = ma
	· '	t.

	Topic:	Stopping distances (P.17)
1	Define "stopping distance"	Thinking distance + braking distance
2	Define "thinking distance"	The distance travelled during the drive's reaction time
3	Define "braking distance"	The distance travelled under the braking force
4	What are the typical values for reaction time	0.2-0.9 seconds
5	State 4 factors that effect a driver's reaction time	Tiredness, alcohol, drugs, distractions
6	State 3 factors that may <u>effect</u> braking distance	Adverse weather conditions (ice/snow/wet), worn tyres, worn brakes
7	What happens to a <u>vehicles</u> braking distance when a car is travelling faster?	Increases
8	Which force causes a car to slow down?	Friction (between brakes and wheels)
9	Describe the energy transfers that occur when a force is applied to a car's brakes	Kinetic <u>energy of</u> car -> thermal energy in the brakes
0	Why is a car travelling at high speed stopping suddenly dangerous?	Need larger braking force -> large deceleration
11	State 2 dangers of large decelerations	Overheating brakes and skidding car
12	Define "adverse"	Bad
13	What is 'inertial mass' (HT only)	A measure of how hard it is to change an object's velocity
14	Define "inertial mass"	The ratio of force over acceleration
15	What does this symbol mean? "~"	Approximately

Year 11 –Forces (Triple Only)

\vdash	Tanta	Mamantum /UT auto) and Mamanta
	Topic:	Momentum (HT only) and Moments
		(separate only) (P.18)
1	Define "momentum" (HT only)	Momentum = mass x velocity
		p = m v
		(kg m/s) (kg) (m/s)
2	Define "conservation of momentum" (HT only)	Total momentum before an event = total
		momentum after event
3	State the equation to calculate change in momentum (HT only)	$F = (m \Delta v) / \Delta t$ when $(m \Delta v)$ is Δp
4	State the relationship between force and momentum (HT only)	Force equals rate of change of momentum
5	Describe how safety features including seat belts, gym crash	Increase time -> decrease rate of change of
	mats and cycle helmets work (linking to momentum) (HT only)	momentum -> decrease force
6	What causes an object to rotate? (separate only)	Forces
7	Give 2 examples of forces causing rotation (separate only)	Pushing down on a door handle, pushing a
		door shut (due to hinge)
8	Define "moment" (separate only)	The turning effect of a force
9	Define "moment" using an equation (separate only)	moment = force x distance
		$M = F \times d$
		(<u>Nm)</u> (N) (m)
10	Describe the moments in a balanced object (separate only)	Total clockwise moment = total anticlockwise
		moment
11	What are gears and levers used for? (separate only)	Transmit and multiply rotational forces
	-	

	Topic:	Static electricity (separate only) (P.20)
1	Which force generates static electricity?	Friction
2	Which particles are transferred between surfaces?	Electrons
3	What charge will an object have if it gains electrons?	Negative
4	What charge will an object have if it loses electrons?	Positive
5	In which group of materials does static electricity occur?	Insulators
6	State the wire that disperses the static charge safely	Earthing wire
7	How do objects become positively charged?	By losing electrons
8	How do objects become negatively charged?	By gaining electrons
9	What will happen if two objects with similar charges are brought	Repel
	together?	
10	What will happen if two objects with different charges are	Attract
	brought together?	
11	How can you tell if an object is charged?	Repels another object
12	What happens when negative charge build up in an insulator?	A spark
13	State one use for static electricity	Photocopiers and spray painting cars
14	How do you draw the electric field pattern for an isolated	Arrows facing out
	charged sphere with a positive charge?	
15	How do you draw the electric field pattern for an isolated	Arrows facing in
	charged sphere with a negative charge?	