

Year 11 –Investigative Chemistry

Type of bonding	Occurs between	Movement of electrons	Bond	Structure	Example	Properties	Reason for property													
Ionic	Metals and non-	Electrons transferred from	Strong electrostatic	Giant ionic	Sodium chloride	Solid at room temperature	They have high melting points													
a fal	metals	outer shell of metal to outer shell of non-metal, Both metals ion and non-metal ion have a full outer shell	force between positive metal ion and negative non- metal ion	ISTRICE	Lithium bromide Calcium oxide	High melting and boiling points	Ions are held together by strong electrostatic forces - a lot of energy is needed to overcome these forces													
(0)						Do not conduct electricity when solid	Ions (charged particles) cannot move													
						Do conduct electricity when molten or in solution	Ions (charged particles) are free to move													
Covalent	Non- metals	Atoms share pairs of	A shared pair	Simple covalent molecules	Chlorine Cl ₂	Liquids or gases at room temperature	Low melting and boiling points													
•••	actual Control	netus	metals	metals	electrons		electrons between	Mater H ₂ O Methane CH ₄ Ammonia NH ₃ Hydrochloric	Methane CH ₄ Ammonia NH ₃ Hydrochloric	Low melting and boiling points NB: the larger the molecules the higher the melting/boiling point (intermolecular force increases with size of molecule)	Weak intermolecular forces between the molecules									
					acid HCl	Do not conduct electricity	No free/delocalised electrons nor are the molecules charged													
						Giant covalent Solid at room temperature lattice High melting and boiling point			All atoms are linked to others by strong covalent bonds											
					Diamond	Herd	Each carbon atom formed four strong covalent bonds with other carbon atoms													
						Does not conduct electricity	No free (no delocalised) electrons													
								Graphite Silicon dio		Graphite Silicon dioxide		Graphite			High thermal conductivity	There are strong covalent bonds between atoms. When one carbon atoms vibrates it causes all four neighbouring atoms to vibrate				
														6		Graphite.		Graphite	Graphite	Graphi te
												Conducts electricity	One electron from each carbon atom is delocalised							
											Silicon dioxide		Silicon dioxide	Silicon dioxide	Herd	Strong covalent bonds hold the axygen and silicon atoms together				
						Does not conduct electricity	No free (no delocalised) electrons													
Metallic	(elements) shell are attraction arrangement	All metals All alloys	High melting and boiling points	Strong metallic bonds between positive ionic lattice and delocalised electrons																
	Alloys (mixtures of metals)	delocalised and so are free to move throughout	between the delocalised electrons and	(lattice) of positive ions held together	positive ions	positive ions held together	positive ions	positive ions	positive ions	positive ions	positive ions	positive ions	positive ions	positive ions		positive ions	positive ions		Good electrical	Delocalised electrons are charge carriers
		the whole structure	positive metal ions	by strong electrostatic		Good thermal conductors	Delocalised electrons can transfer thermal energy													
							A b. I													

<u>5.</u>	Acids	and	Bas	<u>es</u>

Acids and Bases				
Statement	More detail			
When a compound dissolves in water, it dissociates (splits up) into its individual ions	When sodium chloride NoO dissolves, it splits up in No* and O*			
Hydroxide ions OH: make solutions alkaline	Sodium hydroxide NaOH is alkaline because it contains hydroxide OH ions			
Hydrogen ions H* make solutions acidic	Hydrochloric acid HCl is acidic because it contains hydrogen ions H*			
pH scale tells us how acidic or alkaline something is	The phi scales runs from 0-14, phi of 0 - the most acidic phi of 7 - neutral (neither acidic nor alkaline) phi 14 - the most alkaline.			
Measure the pH using: 1.)An indicator changes colour depending on whether it is in an acidic or alkaline solution 2) A pH probe - a digital metre than display the pH on a	Types of indicator Universal indictor - continuous sicales from red (mest cadie) to green (neutral) to purple (more alkaline) Phenolphthalein - colourless in acid, pink in alkali			

Methyl orange - red in acid, orange in alkali

6. Neutralisation Reactivity Series-

Acids are 1. Acid + alkali/base -> salt + water neutralised by: Hydrochloric acid + metal hydroxide 1. alkalis (soluble metal hydroxides) -> metal chloride - water and by bases 2. Acid + metal carbonate -> (insoluble metal salt + water + carbon dioxide e.g. hydrochloric acid + metal hydroxides) 2. Metals carbonate -> metal chloride = water carbonates corbon dioxide

NB. Bases and alkalis are both defined by their hydroxide ions.

The difference is: alkalis are soluble while bases are insoluble

The salt produced neutralisation reaction depends Type of acid

Positive ion

in the alkali,

carbonate

base or

hydrochloric acid produces nitric acid produces nitrates, sulfuric acid produces sulfates

Aluminium Carbon iron Lead Copper Cold

Sodium

Calcium

Magnesium

-Metals react to form positive

-A metal is more reactive, the

easier it can lose electrons

their reactivity (NB: carbon

and hydrogen are non-metals

but often included in the Potassium Most reasure

-Reactivity series is the

metals placed in order of

8. Displacement Reactions

A more reactive metal with displace (swap with) a less reactive metal in a compound.

The more reactive metals wants to be in a compound!

1. Lithium is more reactive. than aluminium so I will displace it: Lithium + aluminium bromide → aluminium + lithium

bromide 2. Potassium is less reactive. then lithium so it will not

9. Extraction Methods

Graphene and Fullerenes Material Details Uses Single layer of graphite, Graphene. Electronics. composites **Fullerenes** Molecules of carbon with hollow shapes. Caron nanotubes: e.g. Buckminster fullerene, C., - spherical nanotechnology. electronics. e.g. Carbon nanotubes - cylindrical materials fullerenes with very high length to diameter ratios

3 Reactions of Metals

o. Neachions of Merais				
React with	Word equation	Example		
Oxygen	Metal + axygen ->metal axide	Magnesium+oxygen → magnesium oxide Mg (s) +O ₂ (g) → MgO (s)		
Water	Metal + water → metal hydroxide + hydrogen	Potassium + water -> potassium hydroxide + hydrogen K(x)+H ₂ O(I)-KOH(aq)+ H ₂ (g)		
Acid Oxidation Reduction	Metal + acid → metal salt + hydrogen NB: salt is an ionic compound (metal bonded to non-metal) the addition of oxygen to an element, the removal of oxygen from a compoun	Magnesium + sulphuric acid → magnesium sulphate + hydrogen Mg (s) +H ₂ SO ₄ (aq)→MgSO ₄ g (aq) +H ₂ (g)		

4	4. Conservation of Mass and Balancing						
E	Equations						
	Law of consierva - tion of mass	No atoms are lost or made during a chemical reaction. Mass of the products * mass of the reactants. If a gas is produced and escaped, it may seem like the mass has decreased.	E.g. Hydrogen and chlorine react together to form hydrogen chloride. If 5g of hydrogen and 5g of chlorine react together, there will be 10g (5g-5g) of hydrogen chloride produced				
1	Balancing equations	In a symbol equation the numbers of atoms of each elements on each side of the equation must be equal. Rules: 1. Count number of atoms of each element on left and right hand side of equation 2. If are NOT the same on each side, need to	Example: 1.				

10. Making Soluble Salts

Soluble salts can be made by reacting:

Acid with

· Solid insoluble substances (e.g. metals, metal oxides, hydroxides or carbonates)

Procedure:

1. Add solid to acid until no more of the solid reacts with the acid

balance the equation Only add BIG numbers

in FRONT of each

compound/element

never small number

afterwards

2. Filter the excess solid (unreacted solid) 3. The filtrate is a solution of the soluble salt

4. The salt produced can be retrieved by crystallisation

Unreactive metals (e.g. gold) occur naturally in their pure form. Majority of metals occur naturally in a compound,

Extraction methods are ways to "extract" (obtain) the metal from the compound. Metals that are LESS reactive than carbon are extracted from their axides by reacting with carbon (see 7. Reactivity Series and 8. Displacement Reactions) E.g. copper is extracted from copper oxide by using carbon because copper is lower down in the reactivity series.

Year 11 -Investigative chemistry (Triple content)

Nanoscience

Size of particles and their properties

- Nanoscience studies three types of small particle: coarse, fine
- Small particles have a LARGE surface area to volume ratio (i.e. their surface is very big compared to their volume)
- Changing the particle size dramatically effect this ratio. E.g. If reduce length of side of cube by a factor of 10 then
 - Surface area decreases by 10x10=100
 - Volume decreases by 10x10x10=1000
 - Surface area to volume ratio increases by 10

Nanoparticles A few hundred atoms in size

- Large surface area to volume ratio means that:
 - nanoparticles have different properties to some material in bulk
 - smaller quantities are needed than in bulk
- Applications of nanoparticles:
 - Sun cream
 - Cosmetics
 - Electronics
 - Medicine As cotalysts

Size

1×101

100m

(1×10)

0.1 nm

1×10°E

1nm-100n

(1×10++-1×10+*)m

Porticle

Coarse

Nano

Observation if ion present

An atom

24	BA-Wei+2-F
of diam	eter
- 2,5x1	10°m
n-2500r	

12. Percentage Yield

No atoms are gained or lost in a chemical reaction (see 5, Conservation of Mass). Yet, cannot always obtained the amount of product calculated because:

- Reaction may be reversible
- Some product may be lost when separated from reaction mixture

Reactant may react in a different way to expected reaction Yield: the actual amount of product obtained

Percentage yield: amount of product obtained compared to maximum theoretical

Equation to know

Percentage yield (%) = mass of product actually made maximum theoretical amount of product

13 Atom Franchy

15. Aloni Cononiy		
Atom Economy	Size of diameter	
Definition	Measure of amount of starting material that end up as useful product, (IAso called: atom utilisation)	
Why is it For sustainable development and for economic reasons important? Reasons more products made means less waste produced		
Equation	Atom economy = relative formula mass of desired productx100	

14. Weak and Strong Acids Completely ionised (split up into ions) in aqueous solution (dissolved in water) Hydrochloric acid, HCl_(m) Examples of strong Sulfuric acid, H₂SO_{4(m)} Nitric acid, HNO Mark Example: HCI HOW + ag -> H' Ing + Cl' Ing Week acid Partially ionised in aqueous solution Examples of weak Ethanoic acid Citric acid

For a fixed concentration: the stronger the acid, the lower the pH, As the pH decreases by one unit, the hydrogen ion concentration of the solution increases by a factor of 10.

OH₂COOH₍₀₎ + aq <u>—</u>OH3COO _(m)+H_(m) The double arrow here shows that there is only **partial**

dissociation - some of the molecules stay as CH2COOH instead of

15. Tests for Ions

		and the same of th
Lithium, Li*	Flame test	Crimson flome
Sodium, Na*		Yellow flame
Potassium, K		Liloc flame
Calcium, Ca ²⁻		Orange-red flame
Copper, Cu ²⁺		Green flame
Aluminium, Al ³⁺	Sodium hydroxide solution added dropwise	Form white precipitates Precipitate dissolves in excess sodium hydroxide solution
Calcium, Car	агорине	Forms white precipitate Does not dissolve in excess sodium hydraxide solution
Magnesium, Mg ²⁺		Forms white precipitate Does not dissolve in excess sodium hydraxide solution
Copper (II), Cur-		Forms blue precipitate
Iron (II). Fe ²⁺		Forms green precipitate
Iron (III), Fe ³⁺		Forms brown precipitate
Corbonate, CO3 ²	Add dilute acid	Carbon dioxide produced (carbon dioxide turns limewater cloudy)
Chloride, Cl	Dilute nitric acid, add silver	White precipitate (compound formed: silver chloride)
Bromide, Br	nitrate dropwise	Cream precipitate (compound formed: silver bromide)
Iodide, I-		Yellow precipitate (compound formed: silver iodide)
Sulfate, SO ₄ 2-	Dilute hydrochloric acid, add barium chloride dropwise	Forms white precipitate

16. Redox Reactions

Oxidation	Loss of electrons
Reduction	Gain of electrons
Redox reaction	Chemical reaction where both reduction and axidation occurs [Example: Fe + Cu ² +> Cu +Fe ² Fe had leaf two electrons to form Fe ² +> Fe had leaf two electrons to form Cu ² + Cu ² + Cu +Fe ² Cu ² had pained two electrons to form Cu ² + Cu ² had been reduced

R education

O xidetion

18. Titration

Titration: Experimental technique to find out how much acid is required to neutralise an alkali.

Example:

Ethanoic acid

When neutralisation takes place, the hydrogen ions from the acid bond with the hydroxide ions from the alkali to produce water: H' (aq) + OH' (aq) + H2O (I)

A suitable indicator is necessary -> need one that is one colour in acids and another in alkalis (universal indictor is NOT a good choice

because it is hard to determine the exact point at which the acid is

neutralised). Equation to know

Concentration (mol/dm²) = amount of substance (mol)


at the cathode?

- 1,5trong acid of known concentration is in burette 2. Alkali to be neutralised of known volume is in conical flask
- 3 Add indictor to conical flask
- 4. Note start point on burette
- 5 Add acid drop-wise to conical flask 6. As soon as indicator changes colour stop
- 7. Note end point on burette and calculate volume added
- 8. Carry out analysis using equation triangle
- NB procedure above can be used with an alkali of known concentration in burette and acid to be neutralised in conical flask.

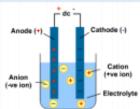
Carbonic acid

its ionic form CHyCOO.

17. Ionic and Half Equations

Ionic equation	Chemical equation showing only the ions that are involved in displacement reaction
Half equation	An ionic equation focusing on CNE species including the electrons that are transferred (An ionic equation can be split into two half equations 4 one for species that gain electrons and one for species that lose)
Spectator	Ions that do not change their electronic state (ionic charge) during the reaction. Spectator ions are NOT included in the ionic equation
Example	Word equation: Potassium + Irthium chloride → potassium chloride : Irthium (spectator ion: Cl. species involved in displacement potassium and lithium) Symbol equation: K + Li → KCl + Li Zonic equation: K + Li → KC + Li Helf equation for potassium = potassium losisi one electron to form potassium ion: K + C → K' (OK X → K' + C) Helf equation for lithium - lithium ion gains one electron to form lithium: Li' + c' → Li Li Li L' + c' + L' L' + C' L' L' + C' L' + C' L' L' + C' L' L' + C' L'

Metals can be extracted from molten compounds using electrolysis. This technique is used if the metal is too reactive. to be extracted by reduction with carbon or if the metal reacts with carbon,


This extraction technique is expensive because large amounts of energy are needed to melt the ionic compounds and to produce

Electrolysis

	What is electrolysis?	Electrolysis is the process by which ionic substances are decomposed (broken down) into simpler substances when an electric current is passed through them.
	What happens to the motion of ions when melted or in solution?	The are free to move
	What happens when electricity is passed through the solution or molten ionic compound?	Ions are charged therefore the: - Cations (positive ions) move towards the cathode (negative electrode) - Aniens (negative ions) move towards the anode (positive electrode)
	What do you call the ions in solution that conduct electricity?	Electrolytes
	What happens once the ions get to the electrodes?	Ions are discharged - forming elements
J	What is produced at the anode?	Non-metal is produced (Anions transfer electrons onto the anode)
	What is produced	Metal is produced

(Cations gain electrons from the cathode)

	Electrolyte	Ions (molten or in solution) that are free to move and can therefore pass electricity through them		
	Electrode	The conductors through which electrical current is transferred to the ionic solution or malten ionic compound		
ı	Anode	Positive electrode		
	Cathode	Negative electrode		
	Anion	Negatively charged particles		
	Cation	Positively charged particles		
	Discharge	Transferal of charge (electrons) at an electrode result in ion returning to elemental (neutral) form		
ľ				

