

Year 7 – Spring 2

The Law of Conservation of Mass

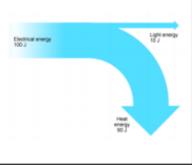
The law of conservation of mass states that...

...energy cannot be created or destroyed, only transferred from one form to another.

Energy transfer diagrams show energy being transferred from one form into another.

Type of Energy	Description
Kinetic Energy	The energy transferred by a
	moving object (e.g. a car).
Sound Energy	Energy transferred within a
	sound wave.
Thermal	Energy transferred as heat
Energy	(e.g. a cup of tea gives out
	thermal energy)
Light Energy	Energy transferred as a light
	wave.
Electrical	The energy transferred by
Energy	electrons in an electrical
	circuit.
Elastic	The energy stored in a
Potential	stretched elastic object (e.g.
	an elastic band).
Gravitational	The energy stored in an object
Potential (GPE)	that has been moved upwards
	in a gravitational field (e.g. a
	rock on a mountain).
Chemical	The energy stored within
Potential	chemical bonds (e.g.
	food/fuels).

Renewable Energy	Non-Renewable
Sources	Energy Sources
(e.g. wind, solar, hydroelectric power).	(e.g. fossil fuels – oil, coal and gas).
Unlimited – supplies will never run out.	Supplies of these fuels will eventually run out.


Efficiency

٦	Insulators	materials that prevent	
1			
1	are	thermal energy loss (they're	
1		poor thermal conductors).	
ı		(e.g. plastics).	
ı	Conductors	materials which transmit	
ı	are	thermal energy from one	
ı		place to another very	
		quickly (e.g. metals).	

Power

Conduction	The movement of thermal energy (heat) along a substance through the	
	vibration of particles. It happens only in solids.	
Convection	When thermal energy moves from one place to another, through the	
	movement of heated particles. Convection can only happen in liquids	
	and gases	
Radiation	The transfer of thermal energy via infrared waves (not particles).	

Linciency	FOWEI
A device is efficient if most of the energy that	Power is defined as the rate at which
it put into it is transferred as useful energy	energy is transferred, or the rate at which
and as little as possible is wasted.	work is done.
Efficiency = (useful energy output ÷ total	Power (W) = work done (J) ÷ time (s)
energy input) x 100	
	Power (W) = energy transferred (J) ÷ time
	(s)

Sankey diagrams show... The input energy describes...

The useful output energy always...

The arrow going down shows...

The width of the arrow is...

...the energy transfers which occur in an appliance (e.g. a lightbulb).

...the total amount of energy going into the device.

...goes straight across the top.

...the wasted output energy.

...proportional to the amount of energy.