

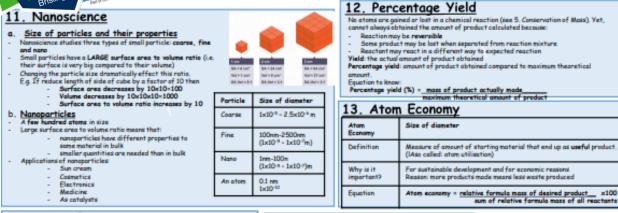
Year 9 – Autumn 2 – Investigative Chemistry

	50.50								<u>2. Gr</u>	aphene (
Type of bonding	Occurs between	Movement of electrons	Bond	Structure	Example	Properties	Reason for property		Material	Details
Ionic	Metals	Electrons	Strong	Giant ionic	Sodium	Solid at room temperature	They have high melting point:	•	Graphene	Single lay
00	and non- metals	transferred from outer shell of metal to outer	electrostatic force between	lattice	chloride Lithium	High melting and boiling points	Ions are held together by sti a lot of energy is needed to a		Fullerent	Molecules e.g. Buck
(9) (9)		shell of non- metal, Both metals ion	ion and negative non-		Colcium oxide	Do not conduct electricity when solid	Ions (charged particles) can	tot move		e.g. Carbo fullerene to diamet
		and non-metal ion have a full outer shell	metal ion			Do conduct electricity when molten or in solution	Ions (charged particles) are	free to move	3. Re	actions
Covalent	Non- metols	Atoms share pairs of	A shared pair (or multiple	Simple covoles	nt Chlorine Cl ₂ Oxygen O ₂	Liquids or gases at room temperature	Low melting and boiling points	(React	Word equation
	incrus.	electrons	(or multiple pairs) of electrons between atoms	molecules	Water H ₂ O Methane CH ₄ Ammonia NH ₃ Hydrochloric	Low melting and boiling points NB: the larger the molecules the higher the melting/boiling point (intermolecular force increases with size of molecule)	Weak intermolecular forces	between the molecules	Oxygen	Metal + oxyge
					acid HCl	Do not conduct electricity	No free/delocalised electron charged	s nor are the molecules	Water	Metal + water
				Giant covalent lattice	1	Solid at room temperature High melting and bailing point	All atoms are linked to other	s by strong covalent bands		
					Diamond	Hard	Each carbon atom formed for with other carbon atoms	ar strong covalent bonds	Acid	Metal + acid + NB: salt is an
						Does not conduct electricity	No free (no delocalised) elec	trons		(metal bondes) the addition of the removal of
						High thermal conductivity	There are strong covalent bo one carbon atoms vibrates it neighbouring atoms to vibrat	causes all four		onservat
					Graphite	Soft and slippery	Each carbon atom is bonded i resulting in a loyered structu intermolecular forces betwee can easily slide over each oth	with three carbon atoms re. There are weak en the layers meaning they	Law of conser- tion of	va- during a
						Conducts electricity	One electron from each carb		mass	the read If a gai
					Silicon dioxide	Hard	Strong covalent bands hold t atoms together	he axygen and silican		esicaped mass ha
						Does not conduct electricity	No free (no delocalised) elec	fronsi	Balanc equati	
Metallic	Metals (elements)	Metals in outer shell are	Electrostatic	Regular arrangement	All metals All alloys	High melting and boiling points	Strong metallic bonds betwee delocalised electrons	en positive ionic lattice and		equation Rules
	Alloys (mixtures of metals)	delocalised and so are free to move throughout	delocalised electrons and	(lattice) of positive ions held together		Good electrical	Delocalised electrons are cha	inge carriers		1,
		the whole structure	positive metal ions	by strong electrostatic		Good thermal conductors	Delocalised electrons can tra	21		2.
5. Ac	ids and	Bases			6. Neutra	lisation	Reactivity	8. Displacemer	<u>nt</u>	
Statement		Mare detail			Statement	More detail	Series	Reactions		3,
	npound dissolves ssociates (splits vidual ions		n chloride NaCl dis Va' and Cl'	solves, it	Acids are neutralised by: 1. alkalis (soluble	1. Acid + alkali/base → solt + water e.g. Hydrochloric acid + metal hydroxide	-Metals react to form positive ions -A metal is more reactive, the	A more reactive metal with displace (swap with) a less reactive metal in a		
	ions OH- make		raxide NaOH is alk ydraxide OH' ions	sline because	metal hydroxides) and by basics (insoluble metal	→ metal chloride + water 2. Acid + metal carbonate → salt + water + carbon dioxide	easier it can lose electrons -Reactivity series is the metals placed in order of	compound, The more reactive metals wants to be in a compound		Making S
Hydrogen ic solutions ac	idic		c acid HCI is acidic trogen ions H*	because it	hydroxides) 2. Metals carbonates	e.g. hydrochloric acid + metal carbonate → metal chloride + water + carbon diaxide	their reactivity (NB: carbon and hydrogen are non-metals but often included in the	e.g. 1. Lithium is more reactive than aluminium so I will	: 4	le solts can be r cid with olid insoluble sub
alkaline son		pH of 0 - th pH of 7 - ne alkaline) pH 14 - the r	es runs from 0-14, e most acidic utral (neither acid most alkaline,	ic nor	The salt produced in the neutralisation reaction depends on: - Type of acid	e.g.; - hydrochloric acid produces chlorides nitric acid produces nitrates, sulfuric acid produces sulfates	Potassium Most reactive Sedium Calcium Hagneelum Auminium Cartion Zinc	displace it: Lithium + aluminium bromide → aluminium + lithium bromide 2. Potassium is less reactive then lithium so it will not displace it:	Proce 1,46 2, Filt 3, Th	arbonates) dure: d solid to acid ur ter the excess so e filtrate is a sole e solt produced c
depending o an acidic or 2) A pH pro	e pH using: tor changes colo n whether it is alkaline solutio be - a digital my the pH on a	in red (mast ac n purple (more the Phenolphtha alkali	dictor - continuous cidic) to green (neu	tral) to acid, pink in	 Positive ion in the alkali, base or carbonate NB, Bases and alkalis 	are both defined by their hydroxide ions. Ialis are soluble while bases are insoluble	lose The Lead Hydrogen Copper Silver Gold Plathum Losermostive	9. Extraction Methods	Majority of Extraction Metals the reacting we E.g. copper	e metals (e.g. gok of metals occur n n methods are wo at are LESS reac rith carbon (see 7 r is extracted fin e reactivity serie

2. Graphene and Fullerenes

Material	Details	Uses
Graphene	Single layer of graphite,	Electronics, composites
	Molecules of carbon with hollow shapes, e.g. Buckminister fullerene, C ₆₀ - spherical e.g. Carbon nanotubes - cylindrical fullerenes with very high length to diameter ratios	Caron nonotubes: nonotechnology, electronics, materials

of Metals


React with	Word equation	Example
Oxygen	Metal + axygen →metal axide	Magnesium+axygen → magnesium axide Mg (s) +O₂(g) → MgO (s)
Water	Metal + water → metal hydroxide + hydrogen	Potassium + water → potassium hydroxide + hydrogen K (x)+H ₂ O (1)→KOH (aq) + H ₂ (g)
Acid Oxidation Reduction	Metal + acid → metal salt + hydrogen NB: salt is an ionic compound (metal bonded to non-metal) the addition of oxygen to an element, the removal of axygen from a compoun	Magnesium + sulphuric acid → magnesium sulphate + hydrogen Mg (s) +H ₂ SO ₄ (aq)→MgSO ₄ <u>H</u> (aq) +H ₂ (g)

tion of Mass and Balancing

		Law of consierva - tion of masis	No atomi are lost or mode during a chemical reaction, Massi of the products = maisi of the reactants. If a gasi is produced and escaped, it may seem like the mass has decreased.	E.g. Hydrogen and chlorine react together to form hydrogen chloride. If 5g of hydrogen and 5g of chlorine react together, there will be tog (5g-5g) of hydrogen chloride produced		
nt		Balancing equations	In a symbol equation the numbers of atoms of each elements on each side of the equation must be equal. Rules: 1. Count number of atoms of each element on left and right hand side of equation 2. If are NOT the same on each side, need to balance the equation 3. Only add BLG numbers in FRONT of each compound/element, never small number afterwards	Example 1. $H_{*} \circ O_{2} \Rightarrow H_{*}O$ NOT balanced 21, $H_{*}O_{2} \Rightarrow 2H_{*}O$ IS balanced 2. NOT balanced 4Na $\circ 2O_{2} \Rightarrow Na_{2}O$ NOT balanced 15 balanced		
e	10. Making Soluble Salts Soluble solts can be made by reacting: • Acid with • Solid insoluble substances (e.g. metals, metal exides, hydroxides or corbonates) Procedure: • Add solid to acid until no more of the solid reacts with the acid • Affilter the excess solid (unreacted solid) • The filtrate is a solution of the soluble solt • The solt produced can be retrieved by crystallisation					
n	Unreactive metals (e.g. gold) occur naturally in their pure form, Majority of metals occur naturally in a compound. Extraction methods are ways to "extract" (obtain) the metal from the compound. Metals that are LESS reactive than carbon are extracted from their axides by reacting with carbon (see 7, Reactive) Series and 8, Displacement Reactions) E.g. copper is extracted from copper axide by using carbon because copper is lower down in the reactivity series.					

Year 9 – Autumn 2 – Investigative chemistry (Triple content)

14. Weak and Strong Acids

Strong acid	Completely ionized (split up into ions) in aqueous solution (dissolved in water)		
Examples of strong acids	Hydrochlaric acid, HCl _(m) Sulfuric acid, H ₂ SO _{4(m)} Nitric acid, HNO _{3(m)}		
Example: HCl	$HC_{(w)} * op * H^*_{(w)} T + op * O^*_{(w)}$		
Weak acid	Partially ionised in aqueous solution		
Examples of weak acids	Ethanoic acid Citric acid Carbenic acid		
Example: Ethanoic acid	$\begin{array}{llllllllllllllllllllllllllllllllllll$		
For a fixed concentration: the stronger the acid, the lower the pH, As the pH decreases by one unit, the hydrogen ion concentration of the solution increases			

- Conical flask

TOVE nem. reat ionic

form

by a factor of 10.

Tests for Ions

Ion	Test	Observation if ion present		
Lithium, Li*	Flome test	Crimson flome		
Sodium, Na*		Yellow flame		
Potassium, K'		Lilac flame		
Colcium, Ce ^p		Orange-red flame		
Copper, Cu ²⁺		Green flame		
Aluminium, AP	Sodium hydroxide solution added dropwise	Form white precipitates Precipitate dissolves in excess sodium hydroxide solution		
Colcium, Cor	aropwise	Forms white precipitate Does not dissolve in excess sodium hydraxide solution		
Magnestium, Mg ^z *		Forms white precipitate Does not dissolve in excess sodium hydraxide solution		
Copper (II), Cu ^{o,}		Forms blue precipitate		
Iron (II) <u>.</u> Fe ²⁺		Forms green precipitate		
Iron (III), Fe ³⁺		Forms brown precipitate		
Carbonate, CO3 ²¹	Add dilute acid	Carbon dioxide produced (carbon dioxide turns limewater cloudy)		
Chloride, Cl'	Dilute nitric acid, add silver	White precipitate (compound formed: silver chloride)		
Bromide, Br	nitrate dropwise	Crean precipitate (compound formed: silver bromide)		
Iodide, I-		Yellow precipitate (compound formed: silver iodide)		
Sulfate, SO4 ²⁻	Dilute hydrochloric acid, add barium chloride dropwise	Forms white precipitate		

16. Redox Reactions

Oxidation Loss of electrons Reduction Gain of electrons Redex Chemical reaction where both reduction and reaction exidation occurs Example Fe+ Cu" → Cu+Fe" Fe has lost two electrons to form Fe>->Fe has been axidised Cu²⁺ has gained two electrons to form Cu⇒Cu²⁺ has been reduced **R** education O xidetion Is Tel Loss 6 cin

17. Ionic and Half Equations

Ionic equation	Chemical equation showing only the ions that are involved in displacement reaction
Half equation	An ionic equation focusing on ONE species including the electronis that are transferred (An ionic equation can be split into two half equations ¹ o ene for species that goin electrons and one for species that lose)
Spectator ion	Ions that do not change their electronic state (ionic charge) during the reaction, Spectator ions are NOT included in the ionic equation
Example	Ward equation: Potassium - lithium chloride \rightarrow potassium chloride - lithium (spectator ion: Cr., species involved in displacement potassium and lithium) Symbol equation: $K \circ LiCl \rightarrow K \circ Li$ Janic equation: $K \circ LiCl \rightarrow K \circ Li$ Half equation for potassium - potassium losses one electron to form potassium ion! $K \circ C \rightarrow K \circ (CR \times A \colon K \circ C)$ Half equation for ilthium - lithium ion gainst one electron to form lithium: $Li^2 \circ C \rightarrow Li$
ataldaan ba a	stracted from molten compounds using
erais can be e	structies from momen compounds using

electrolysis. This technique is used if the metal is too reactive. to be extracted by reduction with carbon or if the metal reacts with carbon,

This extraction technique is expensive because large amounts of energy are needed to melt the ionic compounds and to produce.

Titration

Titration: Experimental technique to find out how much acid is required to neutralise an alkali. When neutralisation takes place, the hydrogen ions from the acid bond with the hydroxide ions from the alkali to produce water: H* (aq) + OH* (aq) + H_2O (I) A suitable indicator is necessary -> need one that is one colour in acids and another in alkalis (universal indictor is NOT a good choice. because it is hard to determine the exact point at which the acid is

neutralised). Equation to know Concentration (mol/dm²) = amount of substance (mol)

at the cathode?

volume (dm³)

Procedure

1.5trong acid of known concentration is in burette 2. Alkali to be neutralised of known volume is in conical flask

3 Add indictor to conical flask

- 4. Note start point on burette
- 5 Add acid drop-wise to conical flask
- 6. As soon as indicator changes colour stop
- 7. Note end point on burette and calculate volume added
- 8. Carry out analysis using equation triangle

NB procedure above can be used with an alkali of known concentration in burette and acid to be neutralised in conical flask.

(Cations gain electrons from the cathode)

<u>19. Elect</u>	rolysis	Electrolyte	Ions (molten or in solution) that are free to m and can therefore pass electricity through th		
What is electrolysis?	Electrolysis is the process by which ionic substances are decomposed (broken down) into simpler substances when an electric current is passed through them.	Electrode	The conductors through which electrical curr is transferred to the ionic solution or molten compound		
Without the second s			Positive electrode		
What happens to the motion of ions	The are free to move	Cathode	Negative electrode		
when melted or in solution?		Anion	Negatively charged particles		
What happens when electricity is passed through	Lons are charged therefore the: - Cations (positive ions) move towards the cathode (negative electrode)	Cation	Positively charged particles		
the solution or molten ionic compound?	 Anions (negative ions) move towards the anode (positive electrode) 	Discharge	Transferal of charge (electrons) at an electro result in ion returning to elemental (neutral) f		
What do you call the ions in solution that conduct electricity?			Anode (+)		
What happens once the ions get to the electrodes?	Ions are discharged - forming elements	Cation			
What is produced at the anode?	Non-metal is produced (Anions transfer electrons onto the anode)		Anion ve ion)		
What is produced	Metal is produced				